
NOTATION 

d, spiral diameter; l, sag; b, turns per unit length of spiral; AT, temperature head be- 
tween heater and surrounding air; Uo, amplitude of mechanical oscillations; 0o, temperature 
oscillation amplitude; ~, phase shift between thermal and mechanical oscillations. 

LITERATURE CITED 

i. D. I. Penner, Ya. B. Duboshinskii, D. B. Duboshinskii, et al., "Parametric thermomechani- 
cal oscillations," in: Some Questions on Excitation of Nondamping Oscillations [in Rus- 
sian], Vladimir State Pedagogic Inst. (1974), No. i, pp. 168-183. 

2. S. E~ Nesis and A. A. Kul~gin, "Experimental study of thermomechanical oscillations of a 
cylindrical heater in an air medium with free convection," Inzh.-Fiz. Zh., 37, No. 6, 
1051-1053 (1979). 

3. S.E. Nesis and A. A, Kul'gin, "Some unique features of thermomechanical oscillations of 
a cylindrical heater," in: Studies in the Physics of Boiling [in Russian], Stavropol' 
State Pedagogic Inst. (1979), No. 5, pp. 88-92, 

NUMERICAL ANALYSIS OF TRANSFER PROCESSES IN SEMICONDUCTING 

DEVICES AND STRUCTURES. 

i. GENERAL PRINCIPLES OF CONSTRUCTING SOLUTIONS OF THE 

FUNDAMENTAL SYSTEM OF EQUATIONS 

I. I. Abramov and V. A. Kharitonov UDC 621.382.82.001:519.95 

The basic situation is considered of constructing effective methods and algor- 
ithms of numerical analysis of transfer processes of charge carriers in semi- 
conducting devices and structures. 

Most transfer processes of energy, mass, momentum, charge, etc. can be described within 
contemporary science and technology only by systems of nonlinear partial differential equa- 
tions. Computational methods taking into account the specifics of given physical problems 
and being the subject of a new scientific discipline, computational physics [i], have been 
developed and widely used so as to model these processes, being of significant scientific and 
practical interest. 

The study of charge transfer processes in semiconducting devices and structures is one 
of the most important problems. Its complexity consists of the fact that transfer of charged 
particles under the action of an external electric field occurs in the presence of immobile 
charges and the internal electric field due to these charges. 

The need to solve this problem is related to the present transition to submicron tech- 
nology of integrated circuits, and consequently, to the difficulties in performing a real 
physical experiment studying the internal processes in the semiconducting structures~ being 
the basis of these circuits. 

In the present paper we consider both the difficulties generated in numerical analysis 
of integrated semiconducting structures and the ways of overcoming them~ It is shown that 
integral finite-difference formulations of the Sharfetter--Gummel [2] and Engl--Dirks [3] type 
for the continuity equation are special cases of a general integral formulation, obtained 
on the basis of the G. I. Marchuk integral identity under a number of physical assumptions. 
By using this identity one can also obtain integral formulations for the case of including 
Fermi statistics. Two-stage methods of vector relaxation systems (VRS) are developed in 
concluding the introduction of the physical balancing principle of the iteration solution of 
the problem. 
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The problem under consideration of analyzing charge transfer processes in semiconducting 
devices and structures consists in the stationary case of solving the fundamental system of 
equations of the theory of semiconducting devices [5]: 

e V 2 ~  = q ( n - - P - - N d  + Na); ( i )  

vJ~ = - - q R ;  (2) 

V i ~ = q R ;  (3) 

]~ = _ q ~ p p v ~ ;  (4) 

I~ = - -  q ~ n v ~ ,  (5) 

where the relation between the concentrations of mobile carriers n, p, the Fermi quasilevels 
~n, @p, and the electrostatic potential P is established by means of some statistics. In the 
case of using Fermi statistics, for example, this is established by means of the Fermi inte- 
gral [6]. Empirical equations [7] are usually used for the dependences of the mobilities ~p, 
~n on the various factors (the field V~, the total concentration N d + N a, etc.). As recom- 
bination-generation models one usually chooses the Shockley--Read--Hall model [8] 

RSh-R-H= (pn - -  pono)/[z~ (p + hi) + T v (n + ni)] (6) 

and the Auger recombination model, for example, [9] 

RA = G (n2p + pZn), ( 7 ) 

where G = 2.10 -aT mS/sec. 

In this case the general recombination-generation model will be 

R = R A + RS~R-H- (8) 

The system under consideration (1)-(5) is nonlinear and is characterized by the large 
range of variation of the basic variables n and p (=20 orders), which largely determines the 
difficulties occurring during numerical analysis of semiconducting devices and structures. 

To these belong: 

i) the requirement of a large memory, being a consequence of the required number of 
points of spatial discretization, so as to guarantee sufficient accuracy and stability of 
approximating the original problem by a system of algebraic equations; 

2) slow convergence of the traditional methods of Gummel-type solutions [i0, ii] with 
the classical methods of selecting the initial approximation [ii], where external voltages 
are given by powers in 1-2.5 kT/q; 

3) the practical ineffectiveness of a powerful and universal numerical method, such as 
Newton's method, for solving an approximate system. This is related to the absence of both 
special iteration methods of solving linear systems of equations numerically in the multi- 
dimensional case, which would guarantee solutions with the required amount of reliability, 
and effective methods of selecting the initial approximation. Therefore, in solving linear 
systems one must use direct methods, which requires huge amounts of memory, consisting of 

dozens of megabytes, and large time expenditure. 

Concerning the first point, we note that significant success was achieved by using the 
Sharfetter-Gummel formulation [2] for the continuity equations (2), (3). As was shown in 
[12] foramodel problem (R = 0, ~ = const), this approach, in conjunction with the usual 
finite-difference version of the Poisson equation, has high accuracy O(h 2) in the output 
characteristics of the device, as was verified by the numerical experiments described in 
[13] (for R @ 0), 

We show now (for simplicity we use the one-dimensional case) that the Sharfetter--Gummel 
formulation is a special case of the formalism obtained on the basis of the Marchuk integral 
identity [4, 14] in conjunction with a number of physical assumptions. For this we intro- 
duce the following notation in Marchuk's approximate prQblem [i4] for the electron continuity 
equations (3), (5) in normalized form (q0: ni = M0) and in the case of using Boltzmann 
statistics: i) pM = --#n exp(P); 2) qM = .- 3) '_ = exp(--~n) ; 4) fM = R; 5) Ax k = h k. This 

gives 
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x 
1 

I {[exp(--qD,~)]h+l--[exp(--(D~)]h q_ [exp(--q)~)]k--[exp(-~)~)]h_1 .} = 1 k+-y.t 
Rdx. 

hk xk+: ~k--l hk (9) ; [--~,~exp(~)l-'dx f [--~exp(~f)] -Idx h-~_ 
x h xk  

To ob ta in  the  Shar fe t te r -Gummel  i n t e g r a l  f o r m u l a t i o n  ( in  the  form of [15, 16]) of  the 
c o n t i n u i t y  equa t ion  from (9) i t  i s  n e c e s s a r y  to make the  fo l lowing  p h y s i c a l  assumptions (we 
recall that one was already made, the use of the Boltzmann statistics): 

I) a linear variation of R in the segment (Xk+z/2 , Xk-x/2), which makes it possible to 
approximate the recombination integral in (9) as follows on the uniform grid: 

x h 1 +_~- 

Rdx = hhRk; 

1 

2) the  m o b i l i t y  changes weakly in  the i n t e g r a t i o n  segments (Xk+~, Xk), (Xk, Xk_~) , which 
makes i t  p o s s i b l e  to take  i t  out  of  the  i n t e g r a l  by us ing mean va lues  nea r  the  p o i n t s  Xk+~/a, 
xk- i/2 ; 

3) linear variation of the electrostatic potential ~ on the mesh [17]. As a result the 
integral 

xkq-1 

J =  2 [exp(~g)] - ldx 
xk 

can be approximated on the uniform grid by the following expressions: a) when Sk ~k+~, then 
[17, 18] 

J = hh+l [exp (-- ~h+l) + exp (-- ~h)]/2; 

b) when ~k ~ ~k+1, then [17] 

ff ~ - -  h h + l  [exp (-- gh+,) - -  exp (-- Sh)]/(~k+~ --- gh). 

As noted in [14], the integrals appearing in Eq. (9) are not carried out in the general 
case. It is useful to use physical assumptions to approximate them. It was shown by Engl 
and Dirks [3] that in the one-dimensional case the recombination integral R can be selected 
by using more natural physical assumptions. As a result this approximation improves the ac- 
curacy in the current [3], which agrees with the conclusion [14] on the change in order of 
approximation of the problem from O(h 2) to O(h) when the smoothness of one of the functions 
pM(--> n exp ~), qM(0), fM(R) is violated (for the given R). We also note that the Marehuk 
s relation (9) is accurate within O(h 2) in the case of using quasiuniform steps in 
space [14], which simplifies considerably the choice of a grid of spatial discretization, 
though only for the continuity. 

It is easily noted that the approximate Marchuk problem can also be used to construct 
approximate continuity equations when Fermi statistics has to be used. For this we use the 
continuity equation in the original form (3), (5), and use the following notation in Eq. 
(1.12) of [14]: i) pM = ~nn; 2) ~M = ~n; 3) qM = 0; 4) fM = R; 5) Ax k = h k. 

As a result we obtain the general integral formulation of the continuity equation in the 
form 

x I 

k+ 7 

hal [x[(~n)k+'~(~')k __((D-~n)~--(~n)k--']-~h ---- j =__i , i J Rax, (io) 

x h x k - -  1 

where the relation of n with the electrostatic potential ~ and with the Fermi quasilevel ~n 
is expressed by means of the Fermi integral [6]. Similar expressions can also be ohtained 
for the continuity equation of holes in the form (2), @). 
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Thus, to enhance the accu~dcy and stability of the approximate continuity equation it is 
necessary to use the integral formulation of equations of type (9), (i0), special cases of 
which are (in the case of using Boltzmann statistics and a number of physical assumptions) 
the formulations of the Sharfetter--Gummel [2] or Engl--Dirks [3] type. 

After approximating the original problem by systems of nonlinear algebraic equations, 
one encounters the problem of integral methods of their solutions. Two approaches exist for 
enhancing the effectiveness of solution algorithms of the given approximate problem by the use 
of integral methods: a choice of an initial approximation by using physical assumptions, and 
the development of new methods of solving the discrete analog of the system of equations. 

It was shown in [19] that in the case of an initial approximation, obtained by numerical 
solution of the truncated system, the convergence of the Gummei method [i0], possessing as a 
whole linear convergence [20], can behave as quadratic or nearly quadratic. In this case the 
assumption of quasiequilibrium [19] was used to obtain the truncated fundamental system. The 
conclusion on significant acceleration of the solution to the problem was also obtained thanks 
to using the STEPSOLVER method [3], in which a step-by-step construction of the simplified 
physical models was provided according to the device regions, thus approaching "exact" solu- 
tions. The drawback of the latter method is the need to provide initial information on the 
regions, where one model or another may be valid. 

However, with the increasingly complicated working conditions of devices the convergence 
of solutions by the Gummel method [3, 19] slows down, therefore the development of new effec- 
tive methods of solving the discrete analog of the fundamental system is quite imDortant. 

Due to the complications noted above, most promising for the analysis of integrated cir- 
cuits are methods of vector relaxation systems [21], consisting of a partial system approach 
to solving partial differential equations, since in this case the systems of linear equations 
have a regular shape, and the application of traditional methods of the type of successive 
upper relaxation becomes justified [16]. The essence of the system approach to the solution 
consists of the following: 

I) choice of a basis of fundamental and auxiliary variables, in whose terms the system 
of differential equations with auxiliary algebraic relations is described; 

2) approximation of the equations, boundary conditions, and algebraic relations by the 
method of finite elements [14] or finite differences [22]; 

3) introduction of assumptions, if necessary, concerning some variables, with the use of 
additional relations so as to obtain the final form of solvable algebraic equations; 

4) choice of an initial approximation for the approximate problem~ having, as a rule, a 

multistage nature; 

5) solution oi the systems of algebraic equations, obtained as a result of satisfying 
stepsl-3, by the vector relaxation method, where the vectors are the values of all the un- 
knowns at the grid sites of spatial discretization, with the use of iteration methods (multi- 
stage in the general case [23]) for finding these vectors. 

The results of the calculations indicate the importance of choosing a basis of variables 
in which algebraic systems are formulated (steps 1-3) and the vector relaxation in step 5 is 
realized. A comparison was performed [21] of the Seidman--Choo method in the basis 6~, n, p~ 
Wn, Wp, W with the method suggested in the basis F = exp($), Qn = exp(-~n), Qp = exp(~p), WQn, 
WQp, W, and the high effectiveness of the latter was shown. We note that to some extent the 
success achieved was related to eliminating the requirement of a good initial approximation 
in ~, automatically appearing in Gummel-type methods [i0, ii], since the algebraic equations 
obtained from the Poisson equation (I) at the third stage of the system approach are replaced 
by linearized equations, augmented by the Boltzmann statistics. In this case, besides ac- 
celerating the convergence and widening the range of convergence, the requirement on a choice 

of initial approximation can be weakened. 

For example, for the method of [21] it is sufficient to choose the initial approximation 
for the Fermi quasilevel, according to [19], and the electrostatic potential under the assump- 
tion of quasineutrality, interchanging in this case the order of points 4 and 2, 3 of the 

method. 

Further acceleration of convergence can be achieved by using two-stage methods. 
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II) . 

basis of fundamental variables F = exp ~, Qp = exp _~p, Qn = exp (-%n) [21]: 

subsystem I 

W =  ~ (QpF-' -}- 1) + "cp (Q~F-}-I), WQp = Qp/W, wQ,~ = Q,~/W, 

v ( F-1 P';vQ;) - -  WQ,~Qp = - -  W - l ,  

V (F~vQ~) -- W%Q~ = -- W -I, 

We divide the system (1)-(5) with the recombination law (6) into two subsystems (I and 
In the case of Boltzmann statistics, they have the following normalized shapes in the 

V 2 (In F) = FQ~ --F-1Qp- N d -}- N~. 
and subsystem II 

(ii) 

(12) 

(13) 

(14) 

Consequently, in one of the subsystems there are two modified differential equations 
(12), (13) and three algebraic equations, solved for W, Wn , (ii)" in the second there is 
only one differential equation, the Poisson equation (14)~ p WQn 

Following a finite-difference approximation, the subsystems I and II consist of systems 
of nonlinear algebraic equations in the vectors F, Qn, Qp, WQ n, WQp, w. We apply the vector 
relaxation method to the subsystems of algebraic equations I, II and to the equations of sub- 
system I. This will also be a two-stage VRS method [24]~ consisting of the following: 

i) an initial approximation is assigned for P, ~n, %p corresponding to the device struc- 
ture; 

2) subsystem II is solved by Newton's method (at the first iteration of the two-stage 
VRS method, upto the required convergence, and at the subsequent $terations -- a given number 
of times, which can be controlled [21]) for F for fixed Qn, Qp; 

3) subsystem I is solved by the VRS method for fixed F: a) the values of WQp, WQn , w are 
calculated at fixed Qn, Qp; b) the system (12), (13) is solved for Qn, Qp for fixed W, WQn , 
WQp; c) items a) and b) of 3) are repeated a given number of times or till the required con- 
vergence; 

4) items 2) and 3) of the two-stage VRS method are continued up to the required accuracy, 
determined either by 16PImaxl, where 1 is the number of Newton iterations of item 2), or by 
the current criterion [19, 21]. We note that the choice of the criterion must depend on the 
purpose of the study. 

It follows from the iteration scheme of the method that after satisfaction of item 3) 
we have agreement of the Qn and Qp values with fixed F (first stage), and, besides, there is 
consistency between Qn and Qp themselves (second stage). Equations (12), (13) in the vari- 
ables Qn, Qp are related in item 3) only by expression (ii), therefore this relation is deter- 
mined by the recombination model and ingredients of "numerical recombinations" [21]. 

It should be noted that errors unavoidably generated in solving the linear systems of 
equations in item 3) can also be associated with "numerical recombination," as well as cor- 
responding errors in item 2) -- with "unbalanced charge" [21]. 

Thus, one of the VRS processes is used in the given case to eliminate the dependences of 
W, WQn , WQp on Qn, Qp, and, consequently for transforming from the basis F, Qn, Qp, W, WQn , 
WQp to the basis F, Q, where Q = (Qn, Qpi. 

For practical realization of the method it is convenient to transfer from the basis Qn, 
Qp to the basis n, p, taking into account their linear interdependence at fixed F, as was done 
in [21]. To save computer time, in most cases only two VRS iterations in item 3) are carried 
out, since its computational cost in solving the linear equations obtained from (12), (13) is 
considerable. 

The two-stage VRS method considered can be generalized to any further shape of the re- 
combination-generation law R (Qn, Qp, F), and to the case when Fermi statistics must be used. 
In this case the form of subsystems I and II (Eqs. (ii)-(14)) changes: subsystem I acquires 
the form: 

W = x~ [p (Qp, F -1) 4- 1] +.cp [n (Q,~, F) -}- 1], t 
Wp = p(Qp, F , I ) w  -1, W n = rt(Qn, F) W - I ,  ,f 

(15) 
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and subsystem II 

v[~pp(Q~. F-I)vlnQpl--P(Qp, F-1)W. =--p0n0 ~-~ + R(Q,~, QI-F), 

�9 v [~.,~ (c2., p) v in c2,d - n (c2,. F) W~ = - -  PonoW-'. + P, (Q,~, Q~, F), 

(16) 

(17) 

v2(lnF) = n(Q~, F)-- p(Q~, F-i)-- Nd + N a, (18) 

where the relation between n, p and Qn, Qp, F is given by the selected statistics. In that 
case the generalized two-staged VRS method will consist of the following: 

i) the initial approximation for P, ~n, ~p is given by the device structure; 

2) subsystem II is solved by Newton's method for F at fixed Qn and DQ (as earlier); 

3) subsystem I is solved by the VRS method for fixed F: a) W l, W~, W~ are found from 
(15); b) the quasilinear continuity equations (16), (17) are solved in AQ~ L, AQn ~ for fixed 
Qn ~, Qp/, W~, w~l, Wn/;C) new values of Qn/+~ and Qn I+I are found; more p~ecisely, Qp/+1 = 
Qp/ + AQp/, Qn/+~ = Qn / + AQn/, l = 1 + i~ where 1 is the number of VRS iterations for sub- 
system II; d) in case of strong coupling between the continuity equations items a), b), and 
c) of 3) are repeated either a given number of times (usually twice) or till the required con- 
vergence (otherwise for I = i we leave the second stage); 

4) items 2) and 3) of the two-stage VRS method are extended till the required accuracy. 

The given method is a two-stage VRS method in the basis F, Q for any combination-genera- 
tion law (Shockley--Read--Hall and others) and for the case of using Fermi statistics. 

Consider the meaning of the suggested two-stage VRS methods. It is well known that 
physically the solution of the system of equations (1)-(5) must satisfy the conservation 
property, i.e., for specific P. 

v i  = v (1,~ + Jp) = o. (19 )  

However, during the iteration of the solution, as in the Seidman-Choo method [ii], for 
example, Eq. (19) is written in the form: 

~ ~ n 
(VI) n ~ V (in + J p) n= RSh-R,-Hn + S~-- RSh-R-H-- Sp, (20) 

n n 
where R~h_R_ H i s  the  numer ica l  r ecombina t ion  va lue  (6) ( for  the s o l u t i o n ) ,  and Sn, Sp are  
"numerical recombinations," related to errors in the initial approximations in all variables 
and the successive solution of the continuity equations (conservation in the approximate 
problems is guaranteed by using the Marchuk integral identity [4]). Thus, generally speaking, 

n40. during the solution iteration the conservation property (19) breaks down, since S~ -- Sp 
This is unavoidable for all single-stage methods in which the continuity equations are solved 

successively. 

Consider now the first two-stage VRS method. 

Durin its aDDlication in item 3) for given F, as a result of the convergence of itera- 
g -~ + + n 

tions Qp, Qn, w, WQp, WQn tend to eonstant values, and, consequently, [Vjn(F)] n = --[7jp(F)] , 
since QnWQp ~ QpWQn (R~ = R~). Thus, the basic meaning of the second stage of iteration of 
the VRS method is the satisfaction of the conservation property at each step of the solution 

(iteration). 

This result can be summarized in form of a principle of physical balance of the itera- 
tion solution of the problem: to accelerate the convergence of iteration methods of solution 
of problems describing transfer processes in semiconducting devices it is necessary, as much 
as possible, to supplement balancing of the iteration solution of the problem while observing 
the conservation property. Thus, the solution of the problem is sought within a given quality 
(conservation). A quantitative measure for deviation from this principle can be provided by 
"numerical sources" in the form of "numerical recombination," related to successive solutions 
of the continuity equations and to errors in the initial approximations for Qn, Qp, and F. 

To obtain "exact" solutions it is necessary that F tend to the "exact" value. The use 
of the concept of "numerical sources" in the form of "numerical recombination" and "un- 
balanced charge" is also useful for the given problem, as was shown in [21], for a qualitative 
theoretical study of the convergence of iteration methods. 

Thus, a general method was suggested for constructing effective and reliable numerical 
methods and algorithms for analyzing semicondueting devices and structures. Its effectiveness 
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will be illustrated in a future publication by a numerical experiment on the example of ana- 
lyzing the operation of a single-collector cell of integrated engineering logic (IEL). 

NOTATION 

~, electrostatic potential" n and p, electron and hole concentrations, respectively; N d 
and Na, donor and acceptor concentrations; Jn, Jp, and j, vector densities of the electron cur- 
rent, hole current, and total current; R, excess rate of recombination over generation for 
holes (Rp) and electrons (Rn); q, electron charge; c, dielectric constant of the material; ~n 
andBp, electron and hole mobilities; ~n and ~p, electron and hole Fermi quasilevels; no and 
po, electron and hole concentrations at thermodynamic equilibrium; ni, intrinsic concentration; 
Tn and Tp, electron and hole lifetimes; kT/q, temperature potential (equal to 0.0258 V at 
T = 300~ x k and xk+~, sites of the basic grid of spatial discretization; Xk-i/2 and 
Xk+~/2 , sites of auxiliary grid of spatial discretiaation; h k and h, grid steps for spatial 
discretization (hk = Xk+i/2 -- Xk-~/2); Yk+~ and Yk+~/2, values of the function y at the points 
Xk+ I andxk+I/2;~P, perturbation to ~, relatively to which is formulated the linearized Pois- 
son equation (6P and other unknowns are, rigorously speaking, vectors, when the topic is 
vector relaxation); (A) n, numerical values of the corresponding variables at the grid sites 
of spatial discretization; and pM qM, ~M and fM, functions in the G. I. Marchuk approximate 
problem (EN~ (1.12), [14]). 
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A SYSTEM FOR COMPUTER-AIDED THERMAL DESIGN 

G. N. Dul'nev and B. V. Pol'shchikov UDC 536.24:681.2 

A systems approach and design unification are used in a method of automating the 
thermal design of electronic devices. 

The design of a device may involve electrical, mechanical, optical, and other systems, 
and many specification have to be met: functional, technological, working, reliability, 
economic, etc. These requirements can be optimally met by means of two major principles 
used in computer-aided design (CAD) systems: design standardization and a systems approach. 
The devices may be based on a modular principle, which involves a hierarchic tree, i.e., a 
device is divided into several units, which themselves are divided into units of lower rank. 
Therefore, the structure is to be considered as components that are largely standardized and 
have a hierarchic relation (electronic components, cassettes, boards, blocks, cooling system, 

etc.). 

In a systems approach to design, the individual sections or devices are considered as a 
whole; characteristic units are identified together with the links between them, as well as 
the effects of changes in individual components on device operation; optimum design is ap- 
plied to the architecture, followed by stepwise optimization of the various units~ 

It must be emphasized that any deviation from integrity in the approach, with a desire 
to work out certain design problems to completion, while the others are left aside and con- 
sidered only if necessary, will result in violation of the information links between the sub- 
systems, which subsequently will require much time in correcting and finishing the device. 

Design automation involves a set of linked problems [i], one of which is the computer- 
aided thermal design (CATD) system, which is a subsystem in the general computer-aided design 
(CAD) system. The CATD includes ways of simulating the temperature distributions in compli- 
cated devices, methods of automating the thermal calculation for various working conditions, 

and computer organization of the thermal-design system. 

The thermal design is closely related to other subsystems and is realized at various 
stages: in simulating the functions, in defining the components, in locating them, and in 

providing the technology. 

At the simulation stage, one analyzes the circuit and identifies the overloaded points 
by considering the heat produced for each component. 

In selecting the components [2] from a given logical description of the system as a whole, 
a hierarchic structure must be set up such that any subsystem in the first level is contained 
in a rack, section, panel, etc. of given size. Then the units of the second rank (cassettes 
and blocks) and those in the third rank (boards containing micromodules, integrated circuits, 
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